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Outline
• Research background and motivation
• University of Washington (UW) cyclotron and clinical neutron 

therapy facility (CNTS) 
• MCNP6 model of the CNTS treatment head
• Neutron dosimetry benchmarking of the MCNP6 CNTS model

– IC-17 ion chamber absolute dose modeling

• Conclusions
• Future work
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Fast Neutron Therapy Facilities
• Fast neutron therapy has shown improved clinical 

outcomes for: 
– Salivary gland tumors
– Locally advanced prostate cancer
– High-risk soft tissue sarcomas

• Other tumors show comparable outcomes as x-
ray therapy

• The UW CNTS is only 1 of 2 fast neutron therapy 
facilities still treating patients left in the world

• Limited development of treatment planning 
software

– Current treatment planning performed with a 
photon model fit with neutron data (Pinnacle3

software) 

• Little development of advanced therapy methods 
like intensity modulated neutron therapy (IMNT)
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Research Objectives

• Develop a fully benchmarked MCNP6 dosimetry model of the 
UW CNTS
– Second checks of patient plans
– Aid in the development of advanced fast neutron therapy methods 

(i.e. IMNT)

• Absolute dosimetry of the MCNP6 CNTS model requires the 
modeling of an IC-17 tissue-equivalent ion chamber
– IC-17 TE ion chamber used for absolute calibration of the beam 
– Ensure that the dose response of the ion chamber compares similarly 

to the dose response of water across all treatment configurations
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UW Cyclotron Facility
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UW Clinical Cyclotron
• Construction complete in 1984
• Built by Scanditronix
• Particles accelerated

– 28.0-50.5 MeV 1H+

– 13.6-23.8 MeV 2H+

– 6.8-12.0 MeV H2
+

– 9.5-15.5 MeV 3He+

– 20.3-35.7 MeV 3He++

– 27.0-47.3 MeV 4He++

• 4 beamlines
– Neutron therapy line
– 2 isotope production lines
– Proton research line
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CNTS Treatment Head
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MCNP6 Model of the CNTS 
Treatment Head
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Treatment Head
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MU Ion Chamber and Wedge Assembly
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CNTS Neutron and Photon Energy 
Spectrum in Water
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IC-17 Ion Chamber Modeling
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Absolute Dose Calibration
• Performed with an IC-17 

tissue-equivalent (TE) ion 
chamber
– Flowing 5 cc/min of methane-

based TE gas

• Calibration field: 
10.3×10.3 cm2, open, 
small flattening filter

• 40×40×40 cm3 water 
tank
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Monoenergetic Neutron and 
Photon Simulations
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CNTS Model Benchmarking
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Output Factors by Field Size

• All normalized to 10.3×10.3 
cm2 field at depth of 10 cm

• Less than 5.2% difference 
from measurements at all 
points (within 2.3% for all 
fields smaller than 
28.8×28.8 cm2)
– Largest differences for the 

largest field 
– The largest field is typically not 

used for patient treatment
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Percent Depth Dose (PDD) Profiles
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Lateral Dose Profiles at a Depth of 1.7 cm
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Wedge Profiles

20

60o Wedge30o Wedge

ANS Annual Meeting, San Francisco CA, 2017



Conclusions and Future Work
• Water is a good surrogate for the IC-17 ion chamber for neutron and photon 

dosimetry of the CNTS fast neutron beam
• MCNP6 model accurately reproduces beam profiles laterally, with depth, and with 

changing field size
• Neutron dosimetry for the CNTS matches measurements within:

– 2.3% for all calibration field points
– 5.2% for all square open fields 
– 1.6% for all wedge factors simulated
– 6.8% for all irregular fields tested

• Neutron dosimetry shows improved agreement over Pinnacle
• Model applications 

– Second checks of treatment plans
– Analysis of non-homogeneous tissue types and geometries (with patient CT scans)
– Aid in the development of advanced therapy methods like IMNT and boron-neutron 
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Material Composition Effects
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Material
Density
(g cm-3)

Simulated
Output Factor 

(cGy/MU)
Percent Difference

from Water

Water 1.00 0.984 0.0%

Adipose Tissue 0.92 1.000 1.6%

Muscle 1.04 0.870 -11.6%

Bone 1.85 0.596 -39.5%

Air 0.001225 0.873 -11.3%

Water 0.001225 0.977 -0.7%

Water 0.92 0.983 -0.1%

Water 1.04 0.989 0.5%

Water 1.85 0.987 0.3%

• Sphere of given 
material at a depth of 
1.7 cm in water (r=1.0 
cm)

• Absorbed dose 
tallied in sphere

• Water simulated at 
different densities to 
demonstrate that 
differences are due to 
material not density
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Historical 21.5 MeV 2H+ Generated 
Neutron Beam

• Early clinical trials at the UW 
were with a fast neutron beam 
generated by 21.5 MeV 
deuterons (over 600 patients)

• Beam was switched to 50.5 MeV 
protons for higher dose rate 
(reduce treatment times)

• Deuteron generated neutron 
beam simulated in MCNP6 for 
RBE comparison to proton 
generated neutron beam
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Average Proton and Alpha Particle Energy
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Average Neutron Energy
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