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Center for Radiation Protection 

Knowledge (https://ornl.gov/crpk/) 

• Established at ORNL per MOU 2010 
– DOE, DoD, EPA, NRC, and OSHA 

• MOU Renewal in 2015 
 
 

• Objectives 
– Maintaining/Preserving U.S. expertise and leadership 
– Development/Application of Radiation Dosimetry and 

Risk Assessment Methodologies/Models 
– Ensure the best scientifically available knowledge in 

regulatory processes and decision making 
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Center for Radiation Protection Knowledge 

https://ornl.gov/crpk 
 
Top:  

Nolan Hertel (JFA, Georgia Institute of Technology)  
Keith Eckerman (Emeritus) 
Rich Leggett (Senior R&D Scientist) 
 
Middle:  

Michael Bellamy (ORNL, R&D Engineer) 
Shaheen Dewji (ORNL, R&D Engineer) 
Derek Jokisch (JFA, Francis Marion U) 
 
Bottom:  

Clay Easterly (Consultant) 
Ken Veinot (Consultant) 
Pat Scofield (ORNL) 
Scott Schwahn (ORNL) 
 
Alumnus: 

Mauritius Hiller 
  

http://crpk.ornl.gov/
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Introduction 

• ICRP Publication 30 contained dosimetric data for 
occupational external exposure to noble gas 
radionuclides which has not been updated. 

• In this work, voxel phantoms positioned in three 
rooms of finite sizes representing  
– office, laboratory, and warehouse  
– dose coefficients computed for monoenergetic alpha, 

photons, electrons, and positrons.  
• Monoenergetic response coefficients used to derive nuclide 

specific effective dose coefficient and their derived air 
concentrations. 
– emission data of ICRP 107  
– tissue weighting factor of ICRP 103 
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Methodology 

Calculation of derived air concentration for noble gases.  
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Methodology – Monte Carlo Simulation 

Room Dimensions  

(m) 

Volume 

(m3) 

Composition  

(cm) 

Small  
(Office) 

5.8 × 5.8 × 3.0 100.92 Walls and Ceiling:  
 2.54 cm (1-inch) concrete 
 1.27 cm (½-inch) sheet rock 
Floor: 
 30 cm concrete  

Medium 
(Laboratory) 

10 × 20 × 30 600 Walls and Ceiling:  
 2.54 cm (1-inch) concrete 
 1.27 cm (½-inch) sheet rock 
Floor: 
 30 cm concrete 

Large 
(Warehouse) 

15 × 15 × 5.3 1192 Walls and Ceiling:  
 20.32 cm (8-inches) concrete 
 No sheetrock 
Floor: 
 30 cm concrete 

Table 1: Room dimensions and geometry. 
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ICRP 110 Reference Computational Phantoms 
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Methodology – Monte Carlo Simulation 

• Calculations performed in each room type for four 
radiation types, three phantoms with source in both 
the room and void voxels of the two voxel 
phantoms.  
– Non-tissue voxels surrounding phantom in the voxel 

lattice require separate source simulation 
– Two-phase approach was required to simulate the voxel 

phantoms in the non-tissue voxels in the lattice 
• (1) Source radiation in room air (external to voxel phantom lattice) 
• (2) Source radiation in non-tissue voxels of the voxel phantom 

lattice 
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Methodology – Monte Carlo Simulation 

(1) Source radiation in room air 

external to voxel phantom lattice 

(ROOM) 

  
(2) Source radiation in 

non-tissue voxels of the 

voxel phantom lattice 

(LATTICE/BOX) 
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Methodology – Monte Carlo Simulation 

(Skin) 

• Voxel phantoms lack resolution to represent the skin cells 
at risk (50 – 90 μm depth). Skin dose coefficients based on 
a mathematical phantom. 

• Male lens of eye coefficients are those of the reference 
adult female phantom (male voxel phantom lacks sufficient 
resolution). 

 Depiction of mathematical 

phantom in the office setting. 
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Effective dose rate coefficient, 𝒆  

The effective dose rate coefficient 𝑒  is given by 

𝑒 =   𝑤𝑇  
ℎ 𝑇,𝑀 + ℎ 𝑇,𝐹

2
𝑇

 

where 𝑤𝑇 is the tissue weighting factor specified in 
ICRP 107 for tissue T.  ℎ 𝑇,𝑀 and ℎ 𝑇,𝐹 are the 
equivalent dose rate coefficients for tissue T of the 
adult male and adult female, respectively. 
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Nuclide-specific dose rate coefficient, ℎ 𝑇  

Dose rate coefficient, ℎ 𝑇, for target tissue T 

ℎ 𝑇 =   𝑌𝑖,𝑗  𝐸𝑖,𝑗  𝑅𝑖 𝑇, 𝐸𝑖,𝑗 +  𝑁 𝐸 𝐸
∞

0

𝑛𝑖

𝑗

𝑛

𝑖
𝑅𝑒 𝑇, 𝐸  𝑑𝐸 

where the summation of the first term extends over radiation 
type i (alpha, photon, and conversion electron) with its inner 
summation extending over the number of such emissions with 
energy 𝐸𝑖,𝑗 , yield 𝑌𝑖,𝑗 and monoenergetic response 𝑅𝑖 𝑇, 𝐸𝑖,𝑗 .  
The second term integrates the response 𝑅𝑒 𝑇, 𝐸 over the 
beta spectra 𝑁(𝐸). 
• The radiation emissions and beta spectra associated with 

the radionuclide are tabulated in ICRP Publication 107. 
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Results – Breast Dose Coefficient 

(Electron) 

Female monoenergetic breast dose coefficients as a function of 

electron energy for voxel phantom lattice source, office room 

source, and combined total.  
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Results – Testes Dose Coefficient 

(Electron) 

Male monoenergetic testes dose coefficients as a function of electron energy 

for voxel phantom lattice source, office room source, and combined total. 
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Results – Effective Dose Coefficient 

(Electron) 

Effective dose coefficients for the office as a function of 

emitted electron energy. 
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Results – Effective Dose Coefficient 

(Photon) 

Effective dose coefficients for the office as a function of 

emitted photon energy. 
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Results – Effective Dose Coefficient 

(Positron) 

Effective dose coefficients for the office as a function of 

emitted positron energy. 
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Results – Room Effective dose 

(Electron) 

Effective dose coefficients for the office, laboratory and 

warehouse settings as a function of emitted electron energy. 
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Results – Room Effective dose (Photon) 

Effective dose coefficients for the office, laboratory and 

warehouse settings as a function of emitted photon energy. 
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Results – Room Effective dose (Positron) 

Effective dose coefficients for the office, laboratory and 

warehouse settings as a function of emitted positron energy. 
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Effective Dose Rate Coefficients 
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Derived Air Concentration, DAC 

The derived air concentration (DAC) for a noble gas 
radionuclide is 

𝐷𝐴𝐶 =  
𝐸

𝑒  𝑡
 

where E is the ICRP Publication 103 recommended 
annual limit on effective dose (0.02 Sv), 𝑒  the 
radionuclide effective dose rate coefficient  (Sv m3 
Bq-1 s-1) and t is the annual occupational exposure 
time in seconds; i.e., 8 h daily, 50 weeks annually or 
2000 h.  
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Results 

• As the particle energies (and correspondingly their ranges) increase, 
the contributions from the room volume begins to dominate  

• Effective dose coefficients for Ar-37 are zero.  
o Ar-37 decays by electron capture with Auger electrons of 

insufficient energy to penetrate skin dead layer. 
• Effective dose coefficients for Ar-39/42 are dominated by the skin dose; 

i.e., approximately the product of skin tissue weighting factor and its 
dose coefficient. 

• Effective dose coefficient for nuclides decaying by positron emission 
dominated by the contribution of the annihilation radiation. 

• For other radionuclides, the effective dose coefficients is due to the 
emitted photon and beta radiation with the latter resulting in 
bremsstrahlung. 

• The DAC developed in this work are generally less restrictive than 
those of ICRP Publication 30 which often were limited by the 0.5 Sv 
restriction on the annual skin dose. 
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Results 
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Conclusions 

• Dose coefficients for three room sizes representing an office, 
laboratory, and warehouse were computed 
– Two-step approach was employed to simulate radiation in non-tissue 

voxels within the lattice surrounding the phantom 

• Coefficients for electrons exhibit little dependence on room 
size for most energies  
– Organs within range of electron transport, dose from source activity 

within the non-tissue voxels of the lattice  
– Photon dose coefficients vary based on room size because of longer 

mean free paths 

• Important to include the air surrounding the voxel phantom 
within the voxel lattice  
– Source particle energies below 200-300 keV  
– Else organ dose coefficient would be underestimated 
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