

University of Stuttgart Institute of Nuclear Technology and Energy Systems

> Generation of an Activation Map for Decommissioning Planning of the Berlin Experimental Reactor II

> > <u>N. Guilliard</u>, J. Lapins, W. Bernnat

> > > **KE**

Outline

- Introduction Berlin Experimental Reactor BER-II
- Principal calculation method (combination of MCNP6, PARTISN, FISPACT)
- Model of the reactor in MCNP6 and PARTISN
- Assumptions for activation calculations and power history
- Validation of methodology for activation calculation by comparison with measured data for selected points and flux distributions
- Results: neutron flux distribution
 - Examples of activation maps for several isotopes
- Summary and outlook

Berlin Experimental Reactor BER-II

- Research reactor (since 1991: 10 MW)
- Operation started in 1971 (5 MW)
- Planned decommissioning in 2019
- Water cooled pool-type reactor
- Core height: 60cm
- 30 fuel elements: 24 FE with 23 plates
 6 FE with control rods and 17 plates

- **Task:** generation of activation map to support decommissioning planning
 - → challenging geometry due to numerous beam tubes and cold neutron source
 - \rightarrow no use of cylindrical symmetry possible
 - → no use of Monte Carlo for neutron flux determination of the whole reactor due to poor statistics in outer concrete regions

Berlin Experimental Reactor BER-II

- Research reactor (since 1991: 10 MW)
- Operation started in 1971 (5 MW)
- Planned decommissioning in 2019
- Water cooled pool-type reactor
- Core height: 60cm
- 30 fuel elements: 24 FE with 23 plates
 - 6 FE with control rods and 17 plates

- Task: generation of activation map to support decommissioning planning
 - → challenging geometry due to numerous beam tubes and cold neutron source
 - \rightarrow no use of cylindrical symmetry possible
 - → no use of Monte Carlo for neutron flux determination of the whole reactor due to poor statistics in outer concrete regions

Berlin Experimental Reactor BER-II

- Research reactor (since 1991: 10 MW)
- Operation started in 1971 (5 MW)
- Planned decommissioning in 2019
- Water cooled pool-type reactor
- Core height: 60cm
- 30 fuel elements: 24 FE with 23 plates
 - 6 FE with control rods and 17 plates

- Task: generation of activation map to support decommissioning planning
 - → challenging geometry due to numerous beam tubes and cold neutron source
 - \rightarrow no use of cylindrical symmetry possible
 - → no use of Monte Carlo for neutron flux determination of the whole reactor due to poor statistics in outer concrete regions

Method of calculation

• MCNP6 and deterministic models in combination with FISPACT

Model of the reactor BER-II in MCNP6

Model of the reactor BER-II in MCNP6

Model of the reactor BER-II in MCNP6

Model in PARTISN

- Mesh with 270 x 220 x 178 = 10 573 200 cells to generate PARTISN input
- S_N order of 32 for angular resolution
- 65 energy groups in macroscopic XS

xy plane at core level

University of Stuttgart - Institute of Nuclear Technology and Energy Systems

yz plane with cold neutron source

Power history

- 1974 1985: 5 MW power, annual intervals
- 1985 1991: Refurbishment to 10 MW, installation of conical beam tube
- 1991 2019: 10 MW power, weekly intervals
- Assumptions for activation calculation:
 - average burn-up
 - no rod movement
 - constant flux shape,
 just adoption of amplitude
 2017, 2018, 2019 operation
 - periods like in 2016

Validation of activation calculation

- Flux from MCNP6 cell tallies
- Uncertainties in material impurities influences results
- Exact position of screws unknown

Activity of Co-60

Component	Position	Measured [Bq/g]	Calculated [Bq/g]
Screw nut (stainless steel)	Front flange	5.84E+07	3.81E+07
Screw nut (stainless steel)	Back flange	9.9E+06	1.12E+07
In-core irradiation tube (AIMg3)	In the core (C3)	2.4E+06	4.12E+06

• Thermal flux calculated with MCNP6 and PARTISN at position of the cold neutron source

• Fast flux calculated with MCNP6 and PARTISN at position of the cold neutron source

- —MCNP6 back flange PARTISN - back flange ---- MCNP6 - front flange -PARTISN - front flange ---- MCNP6 - concrete -PARTISN - concrete - MCNP6 - Be reflector -PARTISN - Be reflector

Results of neutron flux distribution with PARTISN

• Fast flux at the height of the 7 beam tubes

Results of neutron flux distribution with PARTISN

• Thermal flux at the height of the 7 beam tubes

Results – Co-60 activity distribution [Bq/g]

Pseudocolor

Results – H-3 activity distribution [Bq/g]

Pseudocolor

Results – C-14 activity distribution [Bq/g]

Pseudocolor Var: C_14

-1.010e+004

Results – Eu-152 activity distribution [Bq/g]

Pseudocolor Var: Eu152

1.151e+005

Results of activation calculations

 Generation of zone models showing regions with restricted waste disposal or regions with defined waste disposal paths for certain isotopes (from the German radiation safety regulations)

Summary and Outlook

- Coupled method of MCNP6 and PARTISN proves efficient to calculate neutron flux in remote regions of the reactor
- Activation calculation of probes in agreement with measurements
- Generation of activity maps covering the whole reactor for 11 nuclides in the concrete shielding (only four shown)

Ongoing work and planned activities:

- > activation calculation for cold neutron source
- > activation calculations for Beryllium reflector (recycling possible?)
- > extend FISPACT-II to use it in parallel mode

University of Stuttgart Institute of Nuclear Technology and Energy Systems

Thank you!

Nicole Guilliard

e-mail Nicole.guilliard@ike.uni-stuttgart.de phone +49 (0) 711 685-62479 fax +49 (0) 711 685-62010

University of Stuttgart Institute of Nuclear Technology and Energy Systems Pfaffenwaldring 31, 70569 Stutttgart, Germany