Evaluation of RAPID for a
UNF cask benchmark
problem

Valerio Mascolino, Alireza Haghighat, and Nathan Roskoff )
VirginiaTech
Nuclear Science and Engineering Laboratory :
Nuclear Engineering Program, Mechanical Engineering Department
Arlington, VA ' |
http://nsel.ncr.vt.edu

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017 . .
7 & VirginiaTech
Invent the Future®



Outline

> Purpose
> The RAPID code system

> GBC-32 cask computational benchmark
System description
Establishment of MCNP reference models
Comparison of RAPID to MCNP reference models

>Concluding remarks and future work

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017

& VirginiaTech
Invent the Future®
e



Purpose @

> Benchmarking of the RAPID Multi -stage Response-
function Transport (MRT) code system against the GBC-32
Cask system through comparison with MCNP reference
models.
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The RAPID (Real-time Analysis for
Particle transport and In-situ
Detection) code system




MRT

>The RAPID code system isdeveloped based on the
MRT (Multi-stage Response-function Transport)

methodology;the MRT methodology is described as
follows:

1. Partition a problem into stages

2. Represent each stage by a response function or set of resoonse
coéefficients

3. Pre-calculate response functions anayor coefficients (onetime)
4. Couple stages through a set of linear system of equations
5. Solvethe linear system of equationsiteratively in real-time
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The RAPID Code System 'ﬁ'

VL
: : : 290
~RAPID Is capable of calculating the system  eigenvaluek,, b
3D (pin-wise & axially-deoerndent) fission density distribution,
and detector response.
>RAPID iscomprised offive stages:
Pre-calculation (one time)
Stage 1: Calculation of fission matrix (FM) coefficients,and generation ofa database
Stage 2: Calculation detector field-of-view (FOV) and importance function database
Calculation
Stage 3:Processing of FM coefficients
Stage 4:Solvinga linear system of equations, i.e., Fission Matrix (FM) formulation
Stage 5: Detector response calculation
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Fission Matrix (FM) formulation
Eigenvalue formulation
N
1
Si = EZl ai,ij
kiseigenvalue ]
S; isfission source

a; j isthe number of fission neutrons produced in cell i dueto afission
neutron bornincell j.

Subcritical multiplication formulation

N
Si — (al,]S] + bi’jS]l_ntrlnSlC)
j=1
b; ; isthe number of fission neutrons produced in cell i due to asource
neutron bornincell j.
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The GBC-32 cask computational
benchmark




GBC-32 cask computational benchmark

>Geometry
32 Fuel assemblies
Stainless steel (SS304) cylindrical canister

Inter-assembly Boral absorber panels
Height of the canister: 470.76 cm \

[T B s
i
i

i
>Fuel assembly L1 1]
17x17 Optimized Fuel Assembly (OFA) N
25 instrumentation guides o

Fresh UO, 4%wt. enriched fuel pins

Active height: 365.76 cm

-
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Establishment of areference MCNP model

> A reference MCNP model has been established for comparison with the RAPID
results

> This has been accomplished by examining the convergence of the fission
source distribution for asingle-assembly model by:

o Parametric analysis of MCNP eigenvalue parameters:
NSK - Number of Skipped Cycles (NSK)
NAC - Number of Active Cycles (NAC)
NPS- Number of Particles per Cycle (NPS)

 Cycle-to-cycle correlation analysis

>The results of the single-assembly analysis have been extended to the full cask
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Known eigenvalue Monte Carlo difficulties

> Source convergence:Used Nuclear Fuel (UNF) pools
or casksdue to the presence of absorbers, suffer from
undersampling that may result in a biased solution.

> Cycle -to-cycle correlation: previous generation is
used as source inthe power-iteration method,
correlation may take places between successive cycles.
Statistical uncertainties might be underestimated.

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017 . .
7 & VirginiaTech
Invent the Future®




Techniques for examining source convergence
(264 pins x 24 axial nodes =6336 tally regions)

il

> Relative difference
>Shannonentropy stabilization
> Ly, Li,and L, norms
>Centerof Mass (COM)

> Cycle -to-cycle correlation via replication

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017 . .
7 & VirginiaTech
Invent the Future®




NAC, NSK, and NPS parametric
analyses

- Based on the single assembly model -
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Shannon entropy

~158
NSK=1000, ¥ particles
NPS=10° per tally
region

m
H==) Silog,(5:)
=1

where m isthe number of
subregions, and S; istheratio of
fission neutrons newly
generated in it" subregion and
the total number of fission
neutronsin the previous
generation.
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Criticality eigenvalue k

k.ss: variation as a function NAC NAG
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ks variation as a function NSK
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Fission density: L{-norms of relative
differences and uncertainties
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NSK=1000,
NPS=10°

S. _G.
(Rel. Diff.)jn= —2—tTC

where S; ,, and S; .4 indicate the
fission density value of the it" tally
for the nt™* and the most-detailed
(md) cases respectively.

(L{ — norm),,

where N; isthe number of tally
regions, and X isavector containing
the relative differences (blue line) or
therelative uncertainties (orange

line).

Smnd

N
= > Ixi
N« l
=1
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L-2 norm of relative diff./uc.
o

O

O
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Fission density: L,-norms of relative differences
and uncertainties
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NPS=10°

Number of active cycles (NAC)
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where N; isthe number of tally
regions,and X isavector
containingtherelative
differences (blue line) or the
relative uncertainties (orange
line).
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L-oc norm of relative diff./uc.

Fission density: L.,-norms of relative

differences and uncertainties
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where N; isthe number of tally
regions, and X isavector
containing the relative
differences (blueline) or the
relative uncertainties (organe
line).
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L-1 norm of relative diff./uc.

Fission density: L{-norms of relative

differences and uncertainties NSK
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L-2 norm of relative diff./uc.

Fission density: L,-norms of relative
differences and uncertainties
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where N; isthe number of tally
regions,and X isavector
containingtherelative
differences (blue line) or the
relative uncertainties (red line).
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Fission density: L.,-norms of relative

differences and uncertainties
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where N; isthe number of tally
regions,and X isavector
containing therelative
differences (blueline) or the
relative uncertainties (red
line).
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Fission density: L{-norms of relative
differences and uncertainties
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Fission density: L,-norms of relative
differences and uncertainties
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where N; isthe number of
tally regions,and X isa
vector containingthe
relative differences (blue
line) or therelative
uncertainties (red line).
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Fission density: L.,-norms of relative
differences and uncertainties
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Fission density: COM distance from

geometric center as a function of NAC
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N¢
N 100
(%) = N ﬁsz

H/Z ) Ziztl Si,Tl i=1

wherer; isthe distance of the i*" region
from the center of the assembly, and H is
the active height of the fuel.

> The COM behaves like the
neutron source has converged
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Fission density: COM distance from
geometric center as a function of NSK
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where r; isthe distance of the it"
region fromthe center of the
assembly, and H isthe active
height of the fuel.

> The COM behaves like the
neutron source has

converged
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Fission density: COM distance from
geometric center as a function of NPS

5 _
4 N,
_ 100 S
h = N; Tioin
§3_ H/Z'Zizlsi,n i=1
= wherer; isthe distance of the it"
2 region fromthe center of the
assembly, and H isthe active height
’ of the fuel.
- ’x_ - -
e K= - — - & > The COM behaves like the
ot . R il F S S neutron source has
1E4 S5E4 1ES oE5 1EG6 SE6 converged

Number of particles per cycles (NPS)

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017 . .
7 & VirginiaTech
Invent the Future®



Discussion of parametric analyses results

> Shannonentropy, COM, L4, L,,and L., behave similarly for all the
parameters.

>From L, L,,and L, norms
it is concluded that relative differences on averageare higher
than the statistical uncertainties.

>From COMand Shannon entropy,
it is conlcuded that the fission source has converged

> Questions?

Is it possible that the statistical uncertainties are underestimated?
Isit caused by the cycle-to-cycle correlation?
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Analysis of cycle-to-cycle correlation

> N,.=50 replications of aMCNP run with NSK=300,
NAC=500, and NPS=10° are performed.

=

f, distribution

>Calculated the ratios of “actual”to MCNP statistical
1
Oactual __ \/NT_l

N =\ 2
.. . Z]’:rl(si,j_si)
uncertainties,l.e., f;;= ~ = -
MCNP MCNP

> MCNP significantlyunderpredictsuncertainties.

>The weighted average of, is

z
?—1 faiSi

fowgt = — 3 = 2.28 }\Y

i=1 X

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017 . .
7 & VirginiaTech
Invent the Future®




adjusted norms analysis
fa,wgt J y NAC

NSK=1000,
NPS=10°

Statistical
uncertainties used to
calculate norms
factor inthe f; ., 4¢
correctiondueto
cycle-to-cycle
correlation.

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017 . .
7 & VirginiaTech

Invent the Future®



adjusted norms analysis
fa,wgt J y NSK

NAC=1000,
NPS=10°

Statistical uncertainties
used to calculate norms
factor inthe f; ,, 4¢
correction dueto cycle-
to-cycle correlation.
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fswge adjusted norms analysis

Statistical
uncertainties used
to calculate norms
factor inthe f; ,, 4¢
correction dueto
cycle-to-cycle
correlation.
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MCNP reference Single assembly —
eigenvalue parameters

> Based on this study, we selected:
NSK=500, NAC=1000, and NPS=10°

>This set was chosen for achieving
relative statistical uncertainties <1%
for fission density tallies
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MCNP Full-cask model — Eigenvalue
parameters

>NAC and NSK are kept constant due to the assemblies’
uncoupling caused by absorber panels.

> NPS should be scaled by a factor of 32, but NPS=32 - 10°is
computationally prohibitive.

>Therefore, we have used a reasonable NP& 10° per
assembly,i.e., 3.2 - 10° for the full cask.
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Comparison of RAPID to MCNP
reference models

- Single assembly & full cask models -




RAPID vs. MCNP - Single assembly
model

> RAPID calculated and Case MCNP
MCNP syst(_em e!genvqlue of f 1.18030 (+ 2 pcm)
(kerr)and pin-wise, axially-
dependent fission density
distribution, i.e, 6,336 tallies, Fiss. density adjusted 0.48%

are compared rel. uncertainty
Fission density relative

diff.

k.ss relative difference -

> Significant speedupis
obtained using RAPID on just SO 16 cores

a single computer core. 666 min

fime (11.1 hours)

Speedup -
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RAPID vs. MCNP - Full cask model

> RAPID calculated and
MCNP system eigenvalue kit el sl Wit
dependent fission density T

. i ] iIssion density rel.
dlst_rlbutlon, l..e,202,752 1.15% -
tallies (for ~15.8 particles per tally Fission density relative =
region), are compared. diff. ) 9070
> The speedup increases | _
with the dimension of the Time <SH007 Wil Lhte il
model (9.5 days) (35 seconds)
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GBC-32 3D fission density distribution

With a quarter Blanked

Inside view
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Concluding remarks

> Itis demonstrated that RAPID can obtain accurate
pin-wise, axially-dependent fission source distribution
and k¢ in a whole UNF cask in real time (seconds).

>The RAPID MRT algorithm is able tovercome the
main issuesrelated to Monte Carlo eigenvalue
calculations such as source convergence and cycle-to-
cycle correlation.
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Ongoing and future work

External dose/detector response calculation has
been implemented into the RAPID system usingthe
PENTRAN-calculated importance function

methodology. (presented at Work presented at the ANTPC
conference in Santa Fe, New Mexico, Sep 25-30,2016.)

Developingan algorithm for direct calculation of
response coefficients

Initiated discussions with a nuclear utility for

perform experimental benchmarkingof RAPID based
on measurements of the cask surface dose
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Questions?

Thanks
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