Evaluation of RAPID for a UNF cask benchmark problem

Valerio Mascolino, Alireza Haghighat, and Nathan Roskoff Virginia Tech Nuclear Science and Engineering Laboratory Nuclear Engineering Program, Mechanical Engineering Department Arlington, VA http://nsel.ncr.vt.edu

Outline

▷ Purpose

▷ The RAPID code system

▷ GBC-32 cask computational benchmark System description Establishment of MCNP reference models Comparison of RAPID to MCNP reference models

▷Concluding remarks and future work

Purpose

▷ Benchmarking of the RAPID Multi -stage Responsefunction Transport (MRT) code system against the GBC-32 Cask system through comparison with MCNP reference models.

The RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system

MRT

 \triangleright The RAPID code system is developed based on the MRT (Multi-stage Response-function Transport) methodology; the MRT methodology is described as follows:

1.Partition a problem into stages

2.Represent each stage by a response function or set of response coefficients

3.Pre-calculate response functions and/or coefficients (one time) 4.Couple stages through a set of linear system of equations 5.Solve the linear system of equations iteratively in real-time

The RAPID Code System

 \triangleright RAPID is capable of calculating the system eigenvalue k_{eff} , 3D (pin-wise & axially-dependent) fission density distribution, and detector response.

\triangleright RAPID is comprised of five stages:

Pre-calculation (one time)

Stage 1: Calculation of fission matrix (FM) coefficients, and generation of a database Stage 2: Calculation detector field-of-view (FOV) and importance function database

Calculation

Stage 3: Processing of FM coefficients

Stage 4: Solving a linear system of equations, i.e., Fission Matrix (FM) formulation Stage 5: Detector response calculation

Fission Matrix (FM) formulation

Eigenvalue formulation

$$
S_i = \frac{1}{k} \sum_{j=1}^N a_{i,j} S_j
$$

 k is eigenvalue

 S_i is fission source

 $a_{i,j}$ is the number of fission neutrons produced in cell i due to a fission neutron born in cell j .

Subcritical multiplication formulation

$$
S_i = \sum_{j=1}^N (a_{i,j}S_j + b_{i,j}S_j^{intrinsic})
$$

 $b_{i,j}$ is the number of fission neutrons produced in cell i due to a source neutron born in cell j .

The GBC-32 cask computational benchmark

GBC-32 cask computational benchmark

▷Geometry

32 Fuel assemblies Stainless steel (SS304) cylindrical canister Inter-assembly Boral absorber panels Height of the canister: 470.76 cm

▷Fuel assembly

17x17 Optimized Fuel Assembly (OFA) 25 instrumentation guides Fresh $UO₂$ 4% wt. enriched fuel pins Active height: 365.76 cm

Establishment of a reference MCNP model

 \triangleright A reference MCNP model has been established for comparison with the RAPID results

 \triangleright This has been accomplished by examining the convergence of the fission source distribution for a single-assembly model by:

- Parametric analysis of MCNP eigenvalue parameters: NSK - Number of Skipped Cycles (NSK) NAC - Number of Active Cycles (NAC) NPS - Number of Particles per Cycle (NPS)
- Cycle-to-cycle correlation analysis

 \triangleright The results of the single-assembly analysis have been extended to the full cask

Known eigenvalue Monte Carlo difficulties

▷ Source convergence: Used Nuclear Fuel (UNF) pools or casks due to the presence of absorbers, suffer from undersampling that may result in a biased solution.

▷ Cycle -to-cycle correlation: previous generation is used as source in the power-iteration method, correlation may take places between successive cycles. Statistical uncertainties might be underestimated.

Techniques for examining source convergence (264 pins x 24 axial nodes $= 6336$ tally regions)

- ▷ Relative difference
- \triangleright Shannonentropy stabilization
- \triangleright L_{∞} , L_1 , and L_2 norms
- ▷ Center of Mass (COM)

 \triangleright Cycle -to-cycle correlation via replication

NAC, NSK, and NPS parametric analyses

- Based on the single assembly model -

Shannon entropy

ANS Annual Meeting, San Francisco, CA, June 11-15, 2017

k_{eff} : variation as a function NPS

NPS

Fission density: L_1 -norms of relative

NSK=1000, NPS=

 $(Rel. Diff.)_{i,n} =$ $S_{i,n} - S_{i,md}$ $S_{i,md}$ where $S_{i,n}$ and $S_{i,md}$ indicate the fission density value of the i^{th} tally for the n^{th} and the most-detailed (md) cases respectively.

$$
(L_1 - norm)_n = \frac{1}{N_t} \sum_{i=1}^{N_t} |X_i|
$$

where N_t is the number of tally $\overline{}$ regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (orange line).

Fission density: L_2 -norms of relative differences and uncertainties

where N_t is the number of tally regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (orange line).

NAC

Fission density: L_{∞} -norms of relative differences and uncertainties

$$
NSK=1000,
$$

$$
NPS=10^6
$$

$$
(L_{\infty}-norm)_n=\max_i S_{i,n}
$$

where N_t is the number of tally regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (organe line).

Fission density: L_1 -norms of relative

 $(Rel. Diff.)_{i,n} =$ $S_{i,n} - S_{i,md}$ $S_{i,md}$ where $S_{i,n}$ and $S_{i,md}$ indicate the fission density value of the i^{th} tally for the n^{th} and the mostdetailed (md) cases respectively. L_1 – $norm(n)$ 1 N_t $\sum_{i} X_i$ ι =1 $\frac{N_t}{\sqrt{2}}$ **NSK NAC=1000, NPS=**

where N_t is the number of tally regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (red line).

Fission density: L_2 -norms of relative differences and uncertainties

$$
(L_2 - norm)n
$$

=
$$
\frac{1}{N_t} \sum_{i=1}^{N_t} \sqrt{(X_i - \bar{X})^2}
$$

NSK

where N_t is the number of tally regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (red line).

Fission density: L_{∞} -norms of relative differences and uncertainties

Fission density: L_1 -norms of relative differences and uncertainties

 $(Rel. Diff.)_{i,n} =$ $S_{i,n} - S_{i,md}$ ${\cal S}_{i,md}$ where $S_{i,n}$ and $S_{i,md}$ indicate the fission density value of the i^{th} tally $\overline{}$ for the n^{th} and the most-detailed (md) cases respectively. L_1 – $norm(n)$ = 1 N_t \sum ι =1 $\frac{N_{t}}{N_{t}}$ X_i

where N_t is the number of tally $\overline{}$ regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (red line).

Fission density: L_2 -norms of relative

Number of particles per cycles (NPS)

NSK=500, NAC=1000

 $(L_2 - norm)_n$ \sum $l=1$ $\frac{N_t}{\sqrt{2}}$ $X_i - X^2$

NPS

where N_t is the number of tally regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (red line).

 \times 10 5

morm of relative diff./uc.
 \Rightarrow $\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}$

 $L-2$

 $\overline{0}$

 Ω

Fission density: L_{∞} -norms of relative differences and uncertainties

where N_t is the number of tally regions, and X is a vector containing the relative differences (blue line) or the relative uncertainties (red line).

 $(L_{\infty}-norm)_{n}$

 $=$ max $S_{i,n}$ ι

NSK=500,

NAC=1000

Fission density: COM distance from geometric center as a function of NAC **NAC**

NSK=1000, NPS=

$$
\bar{r_n}(96) = \frac{100}{H/2 \cdot \sum_{i=1}^{N_t} S_{i,n}} \sum_{i=1}^{N_t} r_i S_{i,n}
$$

where r_i is the distance of the i^{th} region from the center of the assembly, and H is the active height of the fuel.

 \triangleright The COM behaves like the neutron source has converged

Fission density: COM distance from geometric center as a function of NSK

 $\frac{N_t}{\sqrt{2}}$

NSK

 $iS_{i,n}$

Fission density: COM distance from geometric center as a function of NPS

NSK=500, NAC=1000

$$
\bar{r}_n = \frac{100}{H/2 \cdot \sum_{i=1}^{N_t} S_{i,n}} \sum_{i=1}^{N_t} r_i S_{i,n}
$$

where r_{i} is the distance of the i^{th} region from the center of the assembly, and H is the active height of the fuel.

 \triangleright The COM behaves like the neutron source has **converged**

Discussion of parametric analyses results

 \triangleright Shannon entropy, COM, L_1, L_2 , and L_{∞} behave similarly for all the parameters.

- ▷ From L_1, L_2 , and L_{∞} norms it is concluded that relative differences on averageare higher than the statistical uncertainties.
- \triangleright From *COM* and *Shannon entropy*, it is conlcuded that the **fission source has converged**
- ▷ Questions?

Is it possible that the statistical uncertainties are underestimated? Is it caused by the cycle-to-cycle correlation?

Analysis of cycle-to-cycle correlation

 $\triangleright N_r$ =50 replications of a MCNP run with NSK=300, NAC=500, and NPS= 10^6 are performed.

▷Calculated the ratios of "actual" to MCNP statistical

uncertainties, i.e.,
$$
f_{\sigma,i} = \frac{\sigma_{actual}}{\sigma_{MCNP}} = \frac{\sqrt{\frac{1}{N_r - 1} \sum_{j=1}^{N_r} (S_{i,j} - \bar{S}_i)^2}}{\sigma_{MCNP}}
$$

▷ MCNP significantly underpredicts uncertainties.

 \triangleright The weighted average of is

$$
f_{\sigma, wgt} = \frac{\sum_{i=1}^{n} f_{\sigma i} S_i}{\sum_{i=1}^{n} S_i} = 2.28
$$

$f_{\sigma, wgt}$ adjusted norms analysis

Statistical uncertainties used to calculate norms factor in the $f_{\sigma, wgt}$ correction due to cycle-to-cycle correlation.

NSK=1000,

NPS=

$f_{\sigma, wgt}$ adjusted norms analysis

NAC=1000

NPS

Statistical uncertainties used to calculate norms factor in the $f_{\sigma, wgt}$ correction due to cycle-to-cycle correlation.

MCNP reference Single assembly – eigenvalue parameters

▷ Based on this study, we selected: NSK =500, NAC=1000, and NPS=10⁶

 \triangleright This set was chosen for achieving relative statistical uncertainties $< 1\%$ for fission density tallies

MCNP Full-cask model – Eigenvalue parameters

▷ NAC and NSK are kept constant due to the assemblies' uncoupling caused by absorber panels.

 \triangleright NPS should be scaled by a factor of 32, but NPS=32 \cdot 10⁶ is computationally prohibitive.

 \triangleright Therefore, we have used a reasonable NPS for 10⁵ per assembly, i.e., $3.2 \cdot 10^6$ for the full cask.

Comparison of RAPID to MCNP reference models

- Single assembly & full cask models -

RAPID vs. MCNP - Single assembly model

▷ RAPID calculated and MCNP system eigenvalue (k_{eff}) and pin-wise, axiallydependent fission density distribution, i.e, 6,336 tallies, are compared.

 \triangleright Significant speedupis obtained using RAPID on just a single computer core.

RAPID vs. MCNP – Full cask model

▷ RAPID calculated and MCNP system eigenvalue (k_{eff}) and pin-wise, axiallydependent fission density distribution, i..e, 202,752 tallies (for ~15.8 particles per tally region) , are compared.

▷ The speedup increases with the dimension of the model.

GBC-32 3D fission density distribution

Concluding remarks

 \triangleright It is demonstrated that RAPID can obtain accurate pin-wise, axially-dependent fission source distribution and k_{eff} in a whole UNF cask in real time (seconds).

 \triangleright The RAPID MRT algorithm is able tovercome the main issues related to Monte Carlo eigenvalue calculations such as source convergence and cycle-tocycle correlation.

Ongoing and future work

- ▷ External dose/detector response calculation has been implemented into the RAPID system using the PENTRAN-calculated importance function methodology. (presented at Work presented at the ANTPC conference in Santa Fe, New Mexico, Sep 25-30, 2016.)
- \triangleright Developing an algorithm for direct calculation of response coefficients
- \triangleright Initiated discussions with a nuclear utility for perform *experimental benchmarking* of RAPID based on measurements of the cask surface dose

*

Questions?

Thanks

