

Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

Dr. L. Schlömer¹⁾, Prof. Dr. P.-W. Phlippen¹⁾, B. Lukas²⁾

ANS Annual Meeting June 11-15, 2017, San Francisco

¹⁾ WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, 52428 Jülich, Germany

²⁾ EnBW Kernkraft GmbH, 76661 Philippsburg, Germany

Content

- Company profiles
- Situation & objective
- Calculation procedure & model
- Validation
- Results
- Decommissioning & packaging concepts
- Conclusion & lessons learned

WTI - The Engineering Company of the GNS-Group

- 75 employees
- 60 scientists and engineers
- Sales 2016: 8.8 Mio. EUR

Engineering Services for:

- Planning and construction of plants
 - Decommissioning planning
 - Safety analysis & Licensing procedures
 - Nuclear waste management (waste disposal, development of packages)
- Calculations (shielding, criticality, thermodynamic, mechanical)
- Research & development for industrial applications

WTI - Calculations

- Nuclear analyses
 - Criticality safety analyses
 - Determination of radioactive inventories
 - Activation from neutron irradiation
 - Shielding for casks and storage buildings
 - Planning for optimised cask loadings
- Thermodynamic and flow analyses
 - Transport and storage of spent fuel casks
 - Thermal load of buildings
 - Coolant distribution in storage buildings
- Mechanical analyses
 - Static and dynamic analyses
 - Stability and fracture mechanics analyses
- Validation of software tools and methods

EnBW Energie Baden-Württemberg AG is an European utility with solid shareholders

Introduction and company profile

Overview

- Germany's third largest utility; in Europe within TOP 10
- Business activities in several European countries (GER, CZ, TR, CH, A, HU)
- Four business units: Generation & Trading,
 Renewable Energies, Grids, Sales
- Approximately 20,000 employees
- In 2015 annual revenue 21 billion Euro and Adj. EBITDA 2.1 billion Euro
- Two strong main shareholders (state of BaWü and a group of municipalities)
- Clear strategy:Energiewende. Safe. Hands on.

Wide balanced portfolio is the corporate backbone Introduction and company profile

Sales

> Adjusted EBITDA 2015: €255 million

> Employees: 3,300

Task/products:

Sale of electricity, gas and other products; providing of energy-related services; advisory service; "Sustainable City" project development; support for local authorities; collaboration with public utilities

Grids

> Adjusted EBITDA 2015: €886 million

> Employees: 8,086

> Task/products:

Transport and distribution of electricity and gas, providing of grid-related services, operating grids for third parties and water supply services

Renewable Energies

> Adjusted EBITDA 2015: €287 million

> Employees: 815

Tasks/products:

Project development and management, construction and operation of power plants generating power from renewable energies from hydropower, onshore and offshore wind energy, photovoltaics and bioenergy

Generation and Trading

> Adjusted EBITDA 2015: €777 million

> Employees: 5,167

Tasks/products:

Advisory service, construction, operation and decommissioning of thermal generation plants; electricity trading; risk management; development of gas midstream business, district heating; waste management/ environmental services

Nuclear Business in Transformation – from Operation to Decommissioning

EnBW Kernkraft GmbH - Nuclear Power Plants

EnBW Kernkraft GmbH – nuclear power plants

Obrigheim (KWO)

KWO

- Pressurized water reactor
- Power rating: 357 MW
- > Start of operation: 1969
- End of operation: 2005
- # Employees: ~1.600
- In decommissioning
- In post-operation
- In operation

Philippsburg (KKP)

KKP 1

- Boiling water reactor
- Power rating: 926 MW
- Start of operation: 1979
- End of operation: 2011

KKP 2

- Pressurized water reactor
- Power rating: 1.468 MW
- Start of operation: 1984
- End of operation: 2019P

Neckarwestheim (GKN)

GKNI

- Pressurised water reactor
- Power rating: 840 MW
- Start of operation: 1976
- End of operation: 2011

GKN II

- Pressurized water reactor
- Power rating: 1.400 MW
- Start of operation: 1989
- End of operation: 2022P

Situation & objective (1/2)

- Situation:
 After shut-down nuclear power plants have to be decommissioned
- The knowledge of radioactivity levels in activated components is required for
 - Decommissioning licensing procedure,
 - Planning of segmentation and packaging,
 - Definition of probing regions and number of samples,
 - Prediction of decommissioning costs.

■ Boiling water reactor: KKP1 (✓)

Pressurized water reactors: GKN I (√), GKN II (√) and KKP2 (√)

- Ongoing WTI-project for RWE
 - Pressurized water reactor: Emsland (KKE)
- Acquisition WTI-projects for PreussenElektra GmbH
 - Pressurized water reactors: Unterweser (KKU), Grafenrheinfeld (KKG), Brokdorf (KBR), Grohnde (KWG) and Ohu (KKI 2)

Situation & objective (2/2)

Solution

- Use of state-of-the-art Monte-Carlo-codes (MCNP™)
 coupled with modern variance reduction techniques (ADVANTG)
- Detailed calculation of activation and decay (ORIGEN-S)

Main targets

 Radiological characterization of all relevant components of a light water reactor

- Reduction of samples and related costs
- Cost-efficient and optimized decomissioning concepts

Calculation procedure & model (1/5)

- MCNPTM modelling of BWR (or PWR) as 3D-geometry
 - Core → Merging of fuel assemblies (density & burnup)
 - Core-near and core-far components (e. g. bioshield)
- Analysis of the reactor-life-cycle as basis for the local neutron source distribution → Representative phases
 - Neutron source distribution in the core
 - Water density distribution in the core region and in the RPV
- Segmentation
 - Material compositions & neutron flux spectra/flux distributions
- Activation calculation with ORIGEN-S
 - Input → Neutron spectra and flux densities from MCNP™
 - Alloying and trace elements to be activated
 - Nuclear data based on ENDF/B-VII- and JEFF 3.0-data
 - Validation of computational model and source term

Example: BWR

Calculation procedure & model (2/5)

- Technical drawing BWR
- Detailed MCNPTM-model

Calculation procedure & model (3/5)

Detailed MCNPTM-model (PWR)

Calculation procedure & model (4/5)

■ Full MCNPTM-model (PWR)

Reactor pressure vessel

Calculation procedure & model (5/5)

Control rods and guide tubes

Validation (1/9)

- Basis of validation:
 - Samples
 - Small samples (e. g. cuttings)
 - bore holes, probing of internals
 - Activation detectors (core-near and core-far)
 - Gamma dose rate measurements after shut-down
 - Neutron dose rate measurements during operation
 - Neutron flux density measurements during operation

Validated integral neutron flux, neutron spectra and activation results in

- Core-near and
- Core-far regions

Validation - Samples (2/9)

- Samples are only taken from components outside the RPV
 - Drilling chips

 Results shown as relation calculation(C)/measurement(M) for concrete (B) and steel (S) structures

(Example: BWR, PWR similar)

	nuclide			
sample	Co-60	Cs-134	Eu-152	
S1	1.3	*	*	
S2	1.6	*	*	
S3	1.5	*	*	
B1	4.8	2.6	8.0	
B2	3.7	2.2	7.0	
В3	-	-	-	

^{*:} Not measured, -: Measured activity below detection limit

- Results show good agreement for Co-60 and Cs-134
- Traces of europium in concrete are strongly varying

Validation - Samples (3/9)

- Bore hole samples contain
 - Concrete and armed concrete structure (biological shield)
 - Small samples of the RPV
- Typical results shown as relation C/M
- H-3 overestimated→ Escapes partly during operation
- Generally slight overestimation
- Results behave similar for BWR and PWR

				-	
bore hole sample	nuclide	concrete of biological shield			steel sample
position		towards RPV	in the middle	towards annulus	of RPV
ne es)	H-3	7.1	6.7	-	*
e zo inate	C-14	2.2	-	-	*
activ	Mn-54	*	*	*	2.3
mid level of the active zone (direct radiation dominates)	Co-60	0.9	5.6	-	1.2
	Cs-134	1.4	3.8	-	*
	Eu-152	4.1	3	-	*
	Eu-154	4.1	2.6	-	*
4 m above the active zone (streaming dominates)	H-3	19	2.9	2.8	*
	C-14	2.2	0.1	-	*
	Mn-54	*	*	*	6.8
	Co-60	0.9	-	4.6	1.8
	Cs-134	2	-	-	*
	Eu-152	5.7	-	2	*
	Eu-154	5.1	-	-	*

^{*:} Not measured, -: Measured activity below detection limit

Validation - Activation detectors (4/9)

- Analyses of samples
- Measurement of reaction rates and derivation of fast neutron fluence
- Detectors
 - Fe-54 (n, p) Mn-54
 → short half-life: T_{1/2}(Mn-54) = 312 d
 - Nb-93 (n, n') Nb-93m
 → longer half-life: T_{1/2}(Nb-93m) ≈ 16 a
- Two ways to calculate the reaction rates
 - Directly with MCNP™
 - With ORIGEN-S using MCNP™results → WTI method
- Deviation: C/M from (1.0 ± 0.1) to (1.9 ± 0.2) for both ways and reactor types

Example: BWR

Example: PWR

Validation - Measurement of gamma dose rates (5/9)

- Dose rate measurements between RPV and biological shield after decontamination of the primary circuit (BWR)
 - → Main contribution: Activation products
- Calculated activities are used to estimate the dose rates in the post-operational phase
- Azimuthal varying heterogeneous activation was included
- Major contribution of the shroud to the dose rate along the core height
- Dose rates agree with C/M ≈ 2 to 3
- Same agreement as corenear activation detectors

receptor	С/М	
point		
M0	1.2	
M1	2	
M2	2.7	
M3	1.7	
M4	2.3	
M5	2.2	
M6	2.1	
M7	1.8	
M8	3	
M9	2.6	
M10	2.9	
M11	2	

Validation - Measurement of gamma dose rates (6/9)

Comparison of measured and calculated dose rates (PWR)

Measurement along control rod positions inside a water-free RPV

Results with C/M ≈ 2 to 3 agree as in the case of a BWR

Validation - Measurement of neutron dose rates (7/9)

- Neutron dose rates measured in 2 m to 4 m distance from the entrance of the containment during operation
 - → Neutron streaming
 - Neutron detector Berthold Lb6411 was used
- Detector-Characteristics applied in calculation
- C/M ≈ 1 in about 3 m distance from the entrance

Validation - Flux measurements (8/9)

- Measurement of currents in neutron-ionization chambers during reactor operation
- Currents converted to local neutron flux densities in comparison to calculations
- Results show agreement with C/M = (2.7 ± 0.6)
 - Same accuracy as for previously shown validation results

Validation - Summary (9/9)

- All methods of validation show similar results for both reactor types
 - Good agreement between measurements and calculated neutron flux density distributions, radioactivities and derived dose rates
 - Agreement between the computational codes is demonstrated (code-to-code comparison)
- The developed method reproduces the neutron flux density distribution and activities appropriately in
 - Core-near and
 - Core-far regions

The developed WTI-method to calculate neutron flux density distributions during full power operation for activation analyses is validated!

Results - Neutron flux density distributions (BWR)

Neutron flux density distribution during full power operation, 1/(cm² s)

Results - Neutron flux density distributions (PWR)

Results - Representative phases

- Difference between grouped operation cycles
- Results show the need of creating representative cycle groups

Visualization of activity distributions

Example: Distribution in concrete structures

Decommissioning & packaging concepts (1/3)

Further use of calculated radioactivities

Decommissioning & packaging concepts (2/3)

- Release of radioactive material
- Detailed information of radioactivity distribution inside the containment required
 Radioactive decay
- Trace elements in unradiated materials (basis composition) are important for a possible release

time	release of radioactive material			
	solid material	concrete structures	concrete structures without U & Th	
reference date	3%	31%	53%	
+ 10 years	6%	40%	82%	

■ As function of the specific reference date optimized decommissioning strategies can be realized → Choose of disposal method

Decommissioning & packaging concepts (3/3)

Packaging concept

Conclusion and lessons learned

- Prediction of activities improved by application of the Monte-Carlo-Method and the developed procedure
- Applied method suitable and validated for the determination of radioactive inventory of a nuclear power plant from neutron activation
- Validation demonstrates similar C/M-values along all references
 - Strong confidence in the developed calculation method
 - → Method can be used for the calculation of radioactive inventories of **all** nuclear facilities
- The developed and validated method
 - Reduces significantly the amount of samples
 - Can be used to create cost-effective and optimized packaging concepts

Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

Dr. L. Schlömer¹⁾, Prof. Dr. P.-W. Phlippen¹⁾, B. Lukas²⁾

ANS Annual Meeting June 11-15, 2017, San Francisco

¹⁾ WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, 52428 Jülich, Germany

²⁾ EnBW Kernkraft GmbH, 76661 Philippsburg, Germany