ITER Neutronics Challenges for Upper Port 14

Jonathan Klabacha, Russel Feder, Brian Linn

jklabach@pppl.gov, rfeder@pppl.gov, blinn@pppl.gov

ANS Annual Meeting June 14, 2017

ITER – The Way to New Energy

china eu india japan korea russia usa

2016 EDITION

APLANT SYSTEMS

1111

Credit © ITER Organization, http://www.iter.org/

ППР

ITER – The Way to New Energy

- Worlds largest tokamak being built in southern France
 Bringing the power of the sun down here to earth
 7 ITER Members
 - China, EU, India, Japan, Russia, and the US
- Nothing on this scale has ever been done before
 - Achieve a DT "burning plasma"
 - Produce 500 [MW] fusion energy (10 fold return on energy!)
 - Demonstrate the feasibility of Tritium breeding
 - Integrate wide range of current device components and diagnostics

china eu india japan korea russia us

US ITER – Seven World Class Diagnostics

- The diagnostics are distributed in 13 different installatio
- US ITER has diangostics in 11 different port plugs
 - Requires significant collaboration between ITER member nations

US ITER – Four integrated Port Plug Packages

- There are 4 US ITER port plug packages integrated into ITER.
- Each package consists of port plug, interspace structure, bio-shield, and port cell structure
- Each port plug package requires integrated global ITER analysis
 - This is even more difficult with the integration of 11 diagnostics from 5 different ITER Members

US ITER – Equatorial and Upper Port Plugs

- The many roles of a Port Plug
 - Plasma facing component
 - 14 MeV neutron shield
 - Primary vacuum boundary
 - Tritium confinement
 - Heat Exchanger
 - Withstand EM disruptions
 - Housing and protecting the diagnostics
 - Diagnostic remote handling and maintenance

Port Plug	Dry Weight (mt)	Length (m)
Equatorial	45	3.4
Upper	25	5.5

Port Plug Analysis Requirements

Port Plug Analysis Requirements

Nuclear Computational Procedure

- Attila neutronics code
 - Distributed by Varex Imaging (https://www.vareximaging.com)
 - Attila deterministically solves the linear Boltzmann Transport Equation

 $\frac{d}{ds}\psi(\vec{r},E,\hat{\Omega}) + \sigma_t(\vec{r},E)\psi(\vec{r},E,\hat{\Omega}) = Q_s(\vec{r},E,\hat{\Omega}) + Q_f(\vec{r},E,\hat{\Omega}) + q(\vec{r},E,\hat{\Omega})$

- Attila solves the linear Boltzmann Transport Equation by discretizing the equation in space, energy, and angle, then iterating to convergence
 - Space Linear Discontinuous Finite Element Method on Unstructured Tetrahedral Elements
 - Energy Multi-Group Method with particle energies discretized into finite width bins
 - Angle Discrete Ordinates Method, which solves the transport equation by sweeping mesh along discrete angles
- Benchmarked along with MCNP for ITER analysis
 - Fusion Engineering and Design 88 (2013) 2022-2040
- JASSBY PPPL cluster specific for ITER neutronics calculations
 - 6 systems
 - 16 processors per system
 - 283 GB memory per system

US ITER Nuclear Analysis Energy and Angle Discretization

US ITER Nuclear Analysis UP14 Model

US ITER Nuclear Analysis UP14 Model

- Upper port plug diagnostic model showing the port plug region along with the interspace region
- Three diagnostics are hosted within UP14
 - Global Discharge Cleaning (GDC)
 - Upper Wide Angle Viewing (UWAV)
 - Distruption Mitigation System (DMS)

US ITER Nuclear Analysis UP14 Model

- Upper port plug diagnostic model showing the port plug region along with the interspace region
- Three diagnostics are hosted within UP14
 - Global Discharge Cleaning (GDC)
 - Upper Wide Angle Viewing (UWAV)
 - Distruption Mitigation System (DMS)

US ITER Nuclear Analysis UP14 Model - GDC

to reduce and control impurities

.

- A glow discharge is formed between the electrodes and the plasma facing surfaces
- Impurities will be liberated by the ion bombardment
 - swept out by pumping
- Particular challenges are:
 - Volumetric heating on plasma facing surface
 - Direct streaming due to straight diagnostic

US ITER Nuclear Analysis UP14 Model - UWAV

US ITER Nuclear Analysis UP14 Model - DMS

Plasma Facing Components Neutron Flux

Horizontal View of the Neutron Flux

Vertical View of the Neutron Flux

Nuclear Heating Results

Nuclear Heating – Diagnostic Maximums

6.569

0.989

GDC System

DMS System

20.992

9.044

27.561

10.034

DPA and He production Results

DPA

1.8000E-05

1.6000E-05 1.4000E-05 1.2000E-05 1.0000E-05

6.0000E-06 4.0000E-06 2.0000E-06

- The damage limit of 0.5 [dpa] has been established ٠ for any single bolt location in the port plug.
- The damage in the shutter bolts was determined to be 0.189 [dpa].
- The damage to the SS-625 Mirror 2 holder was 0.538 [dpa] and a bolted connection in that location may require consideration of irradiationinduced property changes

- He production limited to 1 [appm] to permit re-welding of 316L(N)-IG stainless steel components.
 - higher He concentrations could cause crack formation during the re-. welding process.
- Only plasma facing components exceed this limit.

Neutron flux comparison on the Closure Plate

Neutron flux comparison on the Closure Plate

Upper Port 14 Problematic Location

Detailed View of Upper Port 14 Problematic Area

Increase in neutronics due to diagnostics

Upcoming EP09 nuclear analysis

Conclusion

- The Upper Port 14 nuclear analysis has shown problematic areas that have to be addressed before development can continue.
 - Nuclear Heating
 - Overall the nuclear heating does not show significant problems.
 - Information will be used to help design cooling strategies.
 - DPA and He Production
 - Material damage and helium production rates throughout the port plug were shown to be well below their respective limits
 - component analysis can largely ignore radiation-induced changes in material properties.
 - Any bolts introduced into the VisIR mirror M2 assembly will require radiation-induced changes
 - Material damage rates in the M2 assembly were shown to be very close to the limit
 - Neutron Flux
 - Current neutron levels show that the shutdown dose rate requirement will not be met.
 - UWAVs port plug piping design presents a significant streaming path for neutrons
 - It was recommended that a labyrinth and/or additional material be incorporated into the design to effectively minimize activation and shut down dose levels.

Thank you